Tellurium in a Nutshell

Herbert M Sauro

University of Washington

hsauro@uw.washington.edu

Developed by software team at UW in collaboration with the CompucelI3D Group

May 23, 2016

Tellurium is an integrated platform based on Python and spyder2. It runs on Mac, Windows and Linux. It includes the following libraries:

libRoadRunner: A high performance SBML simulation library.

Antimony: Allows user to write models in a more human readable form.

SBML2Matlab: Allows users to export models in Matlab format

In addition Tellurium comes preloaded with the Python plotting library **Matplotlib** and the array package **numpy**. Tellurium also comes with a small number of helper subroutines to make it easier for the average modeler.

To download the software go to the web site:

http://tellurium.analogmachine.org/

Pick the download that is appropriate for your computer.

Do this now.....

First Example

Example

import tellurium as te

```
r = te.loada ('''
```

S1 -> S2; k1*S1;

```
S2 -> S3; k2*S2;
```

```
k1 = 0.1; k2 = 0.45;
S1 = 10; S2 = 0; S3 = 0
```

```
result = r.simulate (0, 40, 100)
r.plot (result)
```

- ∢ ∃ ▶

Example (Simple Model)

- S1 -> S2; k1*S1;
- k1 = 0.1; S1 = 10; S2 = 0

$$\frac{dS1}{dt} = -k_1 S_1$$
$$\frac{dS2}{dt} = k_1 S_1$$

-

• • • • • • • • • • • •

Example (Multiple Reactions)

S1 -> S2; k1*S1; S2 -> S3; k2*S2;

$$k1 = 0.1; k2 = 0.2;$$

 $S1 = 10; S2 = 0; S3 = 0$

$$\frac{dS1}{dt} = -k_1 S_1$$
$$\frac{dS2}{dt} = k_1 S_1 - k_2 S_2$$
$$\frac{dS3}{dt} = k_2 S_2$$

Herbert M Sauro (UW)

-

• • • • • • • • • • • •

Example (Rate Laws)

S1 -> S2; k1*S1 - k2*S2; # Reversible
S2 -> S3; Vmax*S3/(Km + S3); # Michaelis-Menten
k1 = 0.1; k2 = 0.2; Vmax = 10; Km = 0,4
S1 = 10; S2 = 0; S3 = 0

Example (Bimolecular Reactions)

S1 + S2 -> S3; k1*S1*S2; S3 -> S4 + S4; k2*S3; k1 = 0.1; k2 = 0.2;

$$S1 = 10; S2 = 0; S3 = 0$$

Herbert M Sauro (UW)

.

Example (Fixed Species)

```
# This is a comment
# A $ means FIX the concentration of the species
$S1 -> S2; k1*S1;
S2 -> $S3; k2*S2;
k1 = 0.1; k2 = 0.2;
S1 = 10; S2 = 0; S3 = 0
```

F 4 3 F 4

Example (Events)

```
# This is a comment
# A $ means FIX the concentration of the species
$S1 -> S2; k1*S1;
S2 -> $S3; k2*S2;
at (time > 5): k2 = k2*2;
k1 = 0.1; k2 = 0.2;
S1 = 10; S2 = 0; S3 = 0
```

= nar

▶ < E > < E</p>

Example (Named Reactions)

Name reactions are useful for getting the reaction rates
J1: \$S1 -> S2; k1*S1;
J2: S2 -> \$S3; k2*S2;
k1 = 0.1; k2 = 0.2;

$$S1 = 10; S2 = 0; S3 = 0$$

Example (Loading a Model into libRoadRunner)

```
import tellurium as te
r = te.loada ('''
J1: $S1 -> S2; k1*S1;
J2: S2 -> $S3; k2*S2;
k1 = 0.1; k2 = 0.2;
S1 = 10; S2 = 0; S3 = 0
''')
```

.

Example (Standard import boiler plate)

import tellurium as te

import numpy

import roadrunner

import pylab

< ロ > < 同 > < 三 > < 三

Example (Run a Simulation)

```
r = te.loada ('''
J1: $S1 -> S2; k1*S1;
J2: S2 -> $S3; k2*S2;
k1 = 0.1; k2 = 0.2;
S1 = 10; S2 = 0; S3 = 0
''')
result = r.simulate (0, 10, 100)
```

Example (Plotting Results)

```
r = te.loada ('''
  J1: $S1 -> S2; k1*S1;
  J2: S2 -> $S3; k2*S2;
  k1 = 0.1; k2 = 0.2;
  S1 = 10; S2 = 0; S3 = 0
,,,)
result = r.simulate (0, 10, 100)
r.plot (result)
```

🗇 🕨 🔺 🖻 🕨 🔺 🖷

Example (Plotting Results)

Example (Changing Values)

```
r = te.loada ('''
  J1: $S1 -> S2; k1*S1;
  J2: S2 -> $S3; k2*S2;
 k1 = 0.1; k2 = 0.2;
  S1 = 10; S2 = 0; S3 = 0
,,,)
r.k1 = 12.3
r.S1 = 20
result = r.simulate(0, 10, 100)
r.plot (result)
```

= nar

Example (Resetting the Model)

```
r = te.loada (', ')
  J1: $S1 -> S2; k1*S1;
  J2: S2 -> $S3; k2*S2;
 k1 = 0.1; k2 = 0.2;
  S1 = 10; S2 = 0; S3 = 0
,,,)
result = r.simulate(0, 10, 100)
r.reset() # Reset to species initial conditions
r.resetAll() # Reset initial conditions and parameter values
r.resetToOrigin() # Reset back to when the model was loaded
```

Telluirum.RoadRunner Interface

▼o Spyder for Tellurium (2.3.0; Python 2.7)		-		A COLUMN AND A COLUMN AND A COLUMN		×
Elle Edit Search Source Bun Debug Consoles Jools Yiew Help						
□ 🗐 🗐 🕨 🖻 🔁 🏘 🦓 🔊 🔰 🗢 🚴 🖉 📟	💽 🖸 👔	8 🗐	\leftrightarrow	C: Users'/hsauro/Documents\tellurium-files	🔹 🌡 🔫	+
Editor - C: l/sters/Insauro/Documents/Tellurium/untitiedo.py & X						
🔿 🔥 singleGene.py 🗵 📝 untitled0.py 🔯 📝 untitled99.py 🗵 📝 of 4 🕨 🚍	Name	Туре	Size	Value		2
import tellurium as te	False_	bool_	1	false		-
3 ant = '''	True_	bool_	1	True		
4 5 A -> B: k1*A:	ant	str	1			H
				2.712321232450445		
7 A = 10; 8 = 0; 8 k1 = 0.1;	•	float	1	2./18281828459845		90
9 ***	euler_gamma	float	1	0.5772156649015329		
11 r = te.loadAntimonyModel (ant)	pi	float	1	3.141592653589793		
12 result = r.simulate (0, 40, 100) 13 r.plot (result)	Variable explorer File explorer					
14				8 ×		
	Console 7596/A 🙁					Ξ.
	<pre>hdp cr >> pytko's on hdp syste. () by the pytko's on hdp syste. () by the pytko's on hdp syste. () refl() refl() being reflection to the graphical lates interface. Tr (1) refl() refl() (c) (hour c) hour c) bound to the graphical lates interface. Tr (1) refl() refl() (c) (hour c) hour c) bound to the graphical lates interface. Tr (1) refl() refl() (c) (hour c) hour c) bound to the graphical lates interface. Tr (1) refl() refl() (c) (hour c) hour c) bound to the graphical lates interface. Tr (1) refl() refl() (c) (hour c) hour c) bound to the graphical lates interface. Tr (1) refl() (c) (hour c) hour c) hour c) (c) (hour c) (c) (c) (c) (c) (c) (c) (c) (c) (c)</pre>					
•						
ע ז ע ז א גע א א א גע א א גע א א גע א א גע א א א א						
Permanyors. M End-of-line: OLP Encoding: RSC11 Line 12 Column: 1 Memory: 56 A						

(日) (同) (三) (三)

Go to:

- tellurium.analogmachine.org
- for the complete package or
- libroadrunner.org
- for just libRoadRunner.

Exercise

Build a model that describes two consecutive reactions, each reaction governed by the simple Michaelis-Menten rate law

$$v = V_m \frac{S}{K_m + S}$$

$$S_1 \rightarrow S_2 \rightarrow S_3$$

Note S_1 and S_3 are FIXED. Set the parameters and species to:

Km1 = 0.5; Km2 = 0.5; S1 = 10; S2 = 0; S3 = 0; Vm1 = 30; Vm2 = 20;

Load the model into libroadrunner and run a simulation from time zero to time 10 time units. Plot the results. Explain what you observe. Set Vm1 = 18 and rerun the simulation, explain the results.

Herbert M Sauro (UW)

The Systems Biology Markup Language (SBML) is a representation format, based on XML, for communicating and storing computational models of biological processes. It is a free and open standard with widespread software support. SBML can represent many different classes of biological phenomena, including metabolic networks, cell signaling pathways, regulatory networks, infectious diseases, and many others. As an XML format, SBML is not meant to be read or written by Humans.