
Tellurium in a Nutshell

Herbert M Sauro

University of Washington

hsauro@uw.washington.edu

Developed by software team at UW in collaboration with the Compucell3D Group

May 23, 2016

Herbert M Sauro (UW) Introduction May 23, 2016 1 / 22

Tellurium

Tellurium is an integrated platform based on Python and spyder2. It runs
on Mac, Windows and Linux. It includes the following libraries:

libRoadRunner: A high performance SBML simulation library.

Antimony: Allows user to write models in a more human readable form.

SBML2Matlab: Allows users to export models in Matlab format

In addition Tellurium comes preloaded with the Python plotting library
Matplotlib and the array package numpy. Tellurium also comes with a
small number of helper subroutines to make it easier for the average
modeler.

Herbert M Sauro (UW) Introduction May 23, 2016 2 / 22

Download the Software

To download the software go to the web site:

http://tellurium.analogmachine.org/

Pick the download that is appropriate for your computer.

Do this now......

Herbert M Sauro (UW) Introduction May 23, 2016 3 / 22

http://tellurium.analogmachine.org/

First Example

Example

import tellurium as te

r = te.loada (’’’

S1 -> S2; k1*S1;

S2 -> S3; k2*S2;

k1 = 0.1; k2 = 0.45;

S1 = 10; S2 = 0; S3 = 0

’’’)

result = r.simulate (0, 40, 100)

r.plot (result)

Herbert M Sauro (UW) Introduction May 23, 2016 4 / 22

Antimony

Example (Simple Model)

S1 -> S2; k1*S1;

k1 = 0.1; S1 = 10; S2 = 0

dS1

dt
= −k1S1

dS2

dt
= k1S1

Herbert M Sauro (UW) Introduction May 23, 2016 5 / 22

Antimony

Example (Multiple Reactions)

S1 -> S2; k1*S1;

S2 -> S3; k2*S2;

k1 = 0.1; k2 = 0.2;

S1 = 10; S2 = 0; S3 = 0

dS1

dt
= −k1S1

dS2

dt
= k1S1 − k2S2

dS3

dt
= k2S2

Herbert M Sauro (UW) Introduction May 23, 2016 6 / 22

Antimony

Example (Rate Laws)

S1 -> S2; k1*S1 - k2*S2; # Reversible

S2 -> S3; Vmax*S3/(Km + S3); # Michaelis-Menten

k1 = 0.1; k2 = 0.2; Vmax = 10; Km = 0,4

S1 = 10; S2 = 0; S3 = 0

Herbert M Sauro (UW) Introduction May 23, 2016 7 / 22

Antimony

Example (Bimolecular Reactions)

S1 + S2 -> S3; k1*S1*S2;

S3 -> S4 + S4; k2*S3;

k1 = 0.1; k2 = 0.2;

S1 = 10; S2 = 0; S3 = 0

Herbert M Sauro (UW) Introduction May 23, 2016 8 / 22

Antimony

Example (Fixed Species)

This is a comment

A $ means FIX the concentration of the species

$S1 -> S2; k1*S1;

S2 -> $S3; k2*S2;

k1 = 0.1; k2 = 0.2;

S1 = 10; S2 = 0; S3 = 0

Herbert M Sauro (UW) Introduction May 23, 2016 9 / 22

Antimony

Example (Events)

This is a comment

A $ means FIX the concentration of the species

$S1 -> S2; k1*S1;

S2 -> $S3; k2*S2;

at (time > 5): k2 = k2*2;

k1 = 0.1; k2 = 0.2;

S1 = 10; S2 = 0; S3 = 0

Herbert M Sauro (UW) Introduction May 23, 2016 10 / 22

Antimony

Example (Named Reactions)

Name reactions are useful for getting the reaction rates

J1: $S1 -> S2; k1*S1;

J2: S2 -> $S3; k2*S2;

k1 = 0.1; k2 = 0.2;

S1 = 10; S2 = 0; S3 = 0

Herbert M Sauro (UW) Introduction May 23, 2016 11 / 22

Antimony

Example (Loading a Model into libRoadRunner)

import tellurium as te

r = te.loada (’’’

J1: $S1 -> S2; k1*S1;

J2: S2 -> $S3; k2*S2;

k1 = 0.1; k2 = 0.2;

S1 = 10; S2 = 0; S3 = 0

’’’)

Herbert M Sauro (UW) Introduction May 23, 2016 12 / 22

Antimony

Example (Standard import boiler plate)

import tellurium as te

import numpy

import roadrunner

import pylab

Herbert M Sauro (UW) Introduction May 23, 2016 13 / 22

Antimony

Example (Run a Simulation)

r = te.loada (’’’

J1: $S1 -> S2; k1*S1;

J2: S2 -> $S3; k2*S2;

k1 = 0.1; k2 = 0.2;

S1 = 10; S2 = 0; S3 = 0

’’’)

result = r.simulate (0, 10, 100)

Herbert M Sauro (UW) Introduction May 23, 2016 14 / 22

Antimony

Example (Plotting Results)

r = te.loada (’’’

J1: $S1 -> S2; k1*S1;

J2: S2 -> $S3; k2*S2;

k1 = 0.1; k2 = 0.2;

S1 = 10; S2 = 0; S3 = 0

’’’)

result = r.simulate (0, 10, 100)

r.plot (result)

Herbert M Sauro (UW) Introduction May 23, 2016 15 / 22

Antimony

Example (Plotting Results)

Herbert M Sauro (UW) Introduction May 23, 2016 16 / 22

Antimony

Example (Changing Values)

r = te.loada (’’’

J1: $S1 -> S2; k1*S1;

J2: S2 -> $S3; k2*S2;

k1 = 0.1; k2 = 0.2;

S1 = 10; S2 = 0; S3 = 0

’’’)

r.k1 = 12.3

r.S1 = 20

result = r.simulate (0, 10, 100)

r.plot (result)

Herbert M Sauro (UW) Introduction May 23, 2016 17 / 22

Antimony

Example (Resetting the Model)

r = te.loada (’’’

J1: $S1 -> S2; k1*S1;

J2: S2 -> $S3; k2*S2;

k1 = 0.1; k2 = 0.2;

S1 = 10; S2 = 0; S3 = 0

’’’)

result = r.simulate (0, 10, 100)

r.reset() # Reset to species initial conditions

r.resetAll() # Reset initial conditions and parameter values

r.resetToOrigin() # Reset back to when the model was loaded

Herbert M Sauro (UW) Introduction May 23, 2016 18 / 22

Demo

Telluirum.RoadRunner Interface

Herbert M Sauro (UW) Introduction May 23, 2016 19 / 22

Documentation

Go to:

tellurium.analogmachine.org

for the complete package or

libroadrunner.org

for just libRoadRunner.

Herbert M Sauro (UW) Introduction May 23, 2016 20 / 22

Exercise

Build a model that describes two consecutive reactions, each reaction
governed by the simple Michaelis-Menten rate law

v = Vm
S

Km + S

$S1 → S2 → $S3

Note S1 and S3 are FIXED. Set the parameters and species to:

Km1 = 0.5; Km2 = 0.5;

S1 = 10; S2 = 0; S3 = 0;

Vm1 = 30; Vm2 = 20;

Load the model into libroadrunner and run a simulation from time zero to
time 10 time units. Plot the results. Explain what you observe. Set Vm1
= 18 and rerun the simulation, explain the results.

Herbert M Sauro (UW) Introduction May 23, 2016 21 / 22

SBML

The Systems Biology Markup Language (SBML) is a representation
format, based on XML, for communicating and storing computational
models of biological processes. It is a free and open standard with
widespread software support. SBML can represent many different classes
of biological phenomena, including metabolic networks, cell signaling
pathways, regulatory networks, infectious diseases, and many others. As
an XML format, SBML is not meant to be read or written by Humans.

Herbert M Sauro (UW) Introduction May 23, 2016 22 / 22

